

## REVIEW ON NANOSPONGES IN CANCER THERAPY

Khemchand R. Surana<sup>1\*</sup> Orcid: 0000-0001-8918-1159

Dhananjay M. Patil<sup>2</sup> Orcid: 0009-0005-7555-132X

Deepak D. Sonawane<sup>2</sup> Orcid: 0009-0004-1908-5750

Pallavi S. Bachhav<sup>2</sup> Orcid: 0009-0003-7813-7656

Mayuri R. Salave<sup>2</sup> Orcid: 0009-0002-0538-8676

Prasad D. Nikam<sup>2</sup> Orcid: 0009-0004-3597-8452

<sup>1</sup>Department of Pharmaceutical Chemistry, Shreeshakti Shaikshanik Sanstha, Divine College of Pharmacy, Satana, Nashik, Maharashtra, India.

<sup>2</sup>Department of Pharmaceutics, Shreeshakti Shaikshanik Sanstha, Divine College of Pharmacy, Satana, Nashik, Maharashtra, India.

---

**\*Corresponding author:**

*Khemchand R. Surana: khemchandsurana411@gmail.com*

---

**Article Info:**

**Received: 27-11-2022**

**Revised: 02-01-2023**

**Accepted :04-01-2023**

---

**ABSTRACT:**

The development of recent colloidal, porous, microscopic mesh-like delivery systems, or nanosplices, with a size range of 1 m, provides regulated drug delivery at a specific spot in the majority of cancer treatments. Nanosplices have a crucial role to play in the controlled shipping of drugs. Numerous medications, both lipophilic and hydrophilic, may be placed into nanosplices for targeted drug administration and to increase the solubility and bioavailability of the same medication. Nanosplices are able to move freely across the entire frame until they interact with a specific target point, cling to the floor, and begin a controlled drug release. After the development of Nanosplices, issues caused by conventional drug delivery systems were solved. Nanosplices are multifunctional drug delivery systems that both increase treatment efficacy and lessen undesirable side effects. A breakthrough in the treatment of cancer has been made possible by the development of nanosplices (NSs), which are polymeric structures made of branching cyclodextrin (CD). The traditional medication delivery mechanism, which is employed in the treatment of most malignancies, is frequently insoluble and has negative side effects. Thus, energetic drugs that are trapped in complex polymers made of cyclodextrins are employed in nanosplices. Because of the drug's increased solubility, hydrophobic tablets may incorporate into NSs. In this review, we concentrated on providing a fundamental introduction to nanosplices. We also concluded their preparation techniques, polymers used, and characterization.

**Keywords:** Nanosplice, cancer, cyclodextrin, solubility enhancement, Nanosplices in cancer.

---

**1. INTRODUCTION**

With its healing targets for cancer treatment, tailored drug delivery technology has undoubtedly given pharmaceuticals a new lease on life. It is also working to deliver drugs to the proper locations in the body and to regulate their release to prevent overdose. The key advancements inside the site of therapies include the administration of drugs by target-oriented in cancer treatment that enhances healing efficacy, reduction in side effects, and optimal dosage routine [1]. These issues can be resolved by the development of new, complex molecules known as Nanosplices, which selectively and effectively localize pharmacologically active molecules at a pre-diagnosed goal in healing awareness and prescribing access to the non-target ordinary cell lining and thereby decrease toxic effects and increase the therapeutic index of the anti-cancer drug [2]. Nanosplices are microscopic sponges with porous structures that can bind poorly soluble pharmaceuticals to a matrix and increase their bioavailability by altering the drug molecules' pharmacokinetic characteristics. These nanosplices represent a special elegance of nanoparticles that are often generated by employing plant compounds. In contrast to other nanoparticles, they may be porous, dependable, and strong at high temperatures up to 300°C [3, 4]. They may also be insoluble in both water and natural solvents. Due to its 3D structure, which includes chambers with tunable polarity and nonmetric size, they can catch, ship, and launch a wide range of chemicals. NSs are colloidal, solid nanoparticles made of hypercross-linked polymers that have a man-sized cavity. In a combination of polymer solution, the small molecules known as crosslinkers function as tiny

grappling hooks that cause sphere-shaped particles with cavities for drug molecules to develop. Polyester that is biodegradable degrades gradually in the body. This NSs allows for reliable drug administration with less side effects [5, 6].

Nanosponges are nanoparticles with an average diameter of less than 1 m and a length comparable to a contagious disease. They can improve the bioavailability of poorly soluble medications by binding them within the matrix due to their small size and porous nature. This is done by altering the drug molecules' pharmacokinetic characteristics. A revolutionary method called nanosponge provides regulated drug delivery for the treatment of cancer [7]. An developing method for the delivery of cancer drugs is nanosponge. For the development of overall effectiveness of orally, parenterally, and topically delivered medications in cancer treatment, nanosponge drug delivery device is utilised. The medicine can be released at a chosen place in a controlled manner via a nanosponge that can circulate throughout the entire body. Numerous diseases can be treated with nanosponges, and this technology is more effective than the traditional approach at distributing breast cancer medications [8]. The core of nanosponges, which are nanoparticles, may contain several different therapeutic ingredients. These tiny particles can transport both hydrophilic and lipophilic compounds, and they can also increase the solubility of medicinal molecules [9]. Nanosponges' diminutive size and spherical shape have allowed them to evolve into a variety of dosage forms, including parenteral, aerosol, topical, tablets, and capsules [10].

Because of their smaller size and more effective service features, nanosponges create a controlled release of energetic components at the predetermined spot. The nanoparticles use attaching to the surface of the tumour cells to release the medicine in a predictable manner. As tissue accumulation through more ideal permeability and retention (EPR) depends on extravasations of pores on extremely permeable tumour vasculature, targeting the device's particle size is the top priority inside the tumor's large pore size [11, 12]. Due to its organic structure and smooth texture, it resembles a globe, has a community, and is completely biodegradable. The complex molecule disintegrates in the frame at a predetermined rate. As the name suggests, nanosponges are tiny particles that contain pharmaceuticals. As the sponge starts to dissolve, the pharmaceuticals are gradually released. NSs are three-dimensional scaffolds made of a community of polyester that can naturally degrade. When the scaffold breaks, the loaded medicine molecule is released, which lessens the negative effects. This technology is five times more effective than conventional methods at producing breast cancer drugs. Most NSs with a cyclodextrin base are utilised in the treatment of cancer. Nanosponges are porous, risk-free, and robust at high temperatures up to 300°C compared to other nanoparticles [13, 14].

Porous nanosponges are mostly utilised to encapsulate medications that aren't easily soluble. These nanosponges may wear both lipophilic and hydrophilic medicines and have a high-water solubility. The formulations of Nanosponge are stable at temperatures up to 300°C and a pH range of one to eleven [15].

## 2.NANOSPONGES STRUCTURE

The core of nanosponges is a polymeric nanoparticle, and pink blood cell membranes are used to round it (as shown in figure 1). In the creation of nanosponges, cross-linkers, co-polymers, and polymers are employed as materials. The nanomaterial (polyester) has a three-dimensional community and is biodegradable, allowing it to break down inside the body gradually and release the medicine. The middlelets are involved in the absorption of toxins and can include a variety of medications, including enzymes, proteins, vaccinations, and antibodies. The ability of both hydrophilic and lipophilic pharmaceuticals to be transported through the body is a significant benefit, and nanosponges have been shown to enhance the solubility, stability, and bioavailability of medications [16, 17].

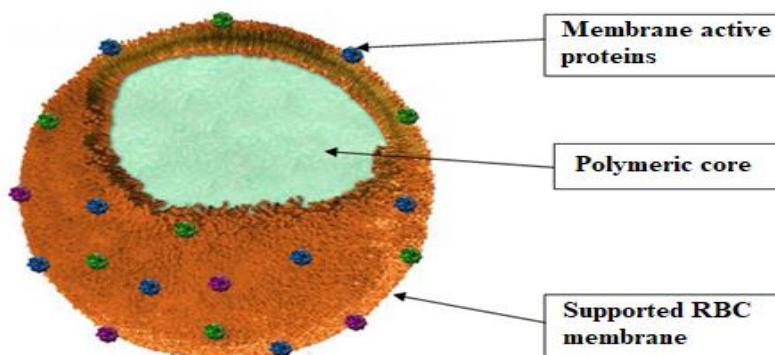



Figure 1: Structure of Nanosponge (Self-created by using Microsoft Windows Paints Version 21H1)

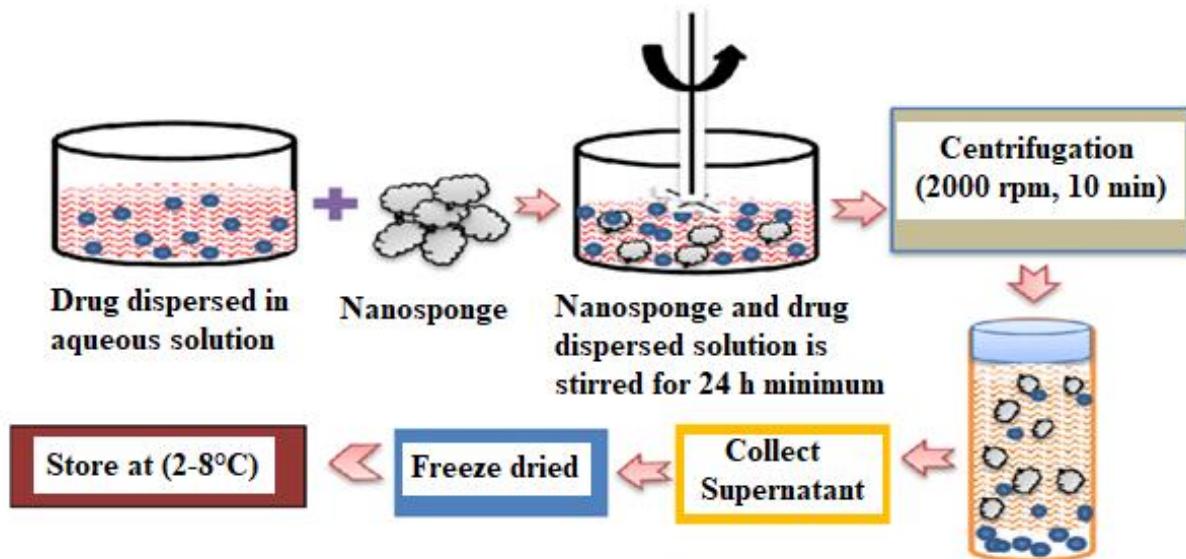
## 2.1 Polymer

The development and overall effectiveness of Nanospikes can be impacted by the polymer choice. The medicine to be encapsulated and the planned launch serve as the sole determinants of the polymer choice. The chosen polymer must have the ability to bond with particular ligands. Hypercrosslinked polystyrene, cyclodextrines and its derivatives, such as methyl cyclodextrin, and copolymers such ethyl cellulose and PVA are a few examples [18].

## 2.2 Cross linking agent

Depending on the polymer's shape and the medicine being developed, the choice of the cross-linking agent may be made. Diphenyl carbonate, dichloromethane, dialyl carbonates, and diisocyanates are some unique examples [19].

## 2.3 Drug substance:


- a. Molecular weight among 100 and 400 Daltons.
- b. Drug molecule includes much less than five condensed rings.
- c. Solubility in water is much less than 10 mg/ml.
- d. Melting factor of substance is beneath 250°C.

## 3.TYPES OF NANOSPONGES

- a. Cyclodextrin based nanospikes.
  - Cyclodextrin based carbamate nanospikes.
  - Cyclodextrin based carbonate nanospikes.
  - Cyclodextrin based ester nanospikes.
  - Polyamidoamine Nano sponges.
  - Modified nanospikes
- b. Titanium based nanospikes.
- c. Silicon nanospike particles.
- d. Hyper cross-linked polystyrene Nano sponges.

## 4.LOADING OF DRUG IN NANOSPONGES

Pre-treatment is used to reduce a nanospike's major particle size to below 500 nm. To prevent aggregates, NSs are sonicated while suspended in water. The suspended solution is centrifuged to separate the colloidal fraction. The sample is then freeze dried after the resilient has been separated. The NS is acquired in the form of an aqueous suspension, which is dissolved in additional medication and agitated continuously until a complexation forms. Centrifugation is used to isolate the simple drug form. Furthermore, via solvent evaporation or freeze drying, the NSs are produced as solid crystals. Because paracrystalline NSs exhibit a range of loading capabilities, their crystal shape is greatly advantageous in complexation with drugs. Loading of Nanospikes as shown in figure 2. When compared to paracrystalline NSs, crystalline NSs have a higher loading capacity [20, 21]. In table 1 list of drugs formulated as Nanospikes shown.



**Figure 2: Loading of Nanosponges (Self created by using Microsoft Windows Paints Version21H1).**

**List of Drugs Formulated as Nanosponges**

**Table 1: Drugs formulated as Nanosponges**

| Drug         | Nanosponge vehicle                   | Category of drug     |
|--------------|--------------------------------------|----------------------|
| Tamoxifen    | $\beta$ – Cyclodextrin               | Breast cancer        |
| Paclitaxel   | $\beta$ – Cyclodextrin               | Cancer               |
| Camptothecin | $\beta$ – Cyclodextrin               | Cancer               |
| Resveratrol  | $\beta$ – Cyclodextrin               | Cancer, Inflammation |
| Temozolamide | Poly(valerolacto-allylvalerolactone) | Brain tumor          |

**5.FORMULATION OF DOXORUBICIN LOADED NANOSPONGES**

By using the method of emulsion solvent evaporation, doxorubicin nanosponges were created. The formulation uses two distinct polymers. Ten batches of Nanosponges (F1 F10) were taken, each of which had different ratios of the polymers ethylene cellulose (EC) and polymethyl methacrylate (PMMA). The aqueous phase is made up of distilled water and polyvinyl alcohol. The polymers were dissolved in dichloromethane, and the drug was dissolved in the necessary solvent (dimethyl sulphoxide). After adding the drug solution to the polymer solution, the aggregate was thoroughly shook. Then, using a high-speed homogenizer, the drug polymer combination was added to the aqueous phase and homogenised for two hours at 35°C at 1500 revolutions per minute (rpm). High-speed cooling centrifuges were used to separate the produced Nanosponges, and the residue was then freeze dried [23, 24]. Formulation of nanosponges as shown in table 2.

**Table 2: Formulation of Nanospunge**

| Sr. No. | INGREDIENTS | F1  | F2  | F3  | F4  | F5  | F6  | F7  | F8  | F9  | F10 |
|---------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1       | Drug (mg)   | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2       | EC (mg)     | 100 | 200 | 300 | 400 | 500 | -   | -   | -   | -   | -   |
| 3       | PMMA (mg)   | -   | -   | -   | -   | -   | 100 | 200 | 300 | 400 | 500 |
| 4       | PVA (g)     | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |

|   |                      |     |     |     |     |     |     |     |     |     |     |
|---|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5 | DCM (ml)             | 20  | 20  | 20  | 20  | 20  | 20  | 20  | 20  | 20  | 20  |
| 6 | Distilled water (ml) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

EC- Ethyl cellulose, PMMA- Poly methacrylate, DCM- Dichloro methane, PVA- Polyvinyl Alcohol.

## 6.MECHANISM OF DRUG RELEASE FROM NANOSPONGES

Nanosponges have the capacity to replicate how tablets are injected into the body, increasing their effectiveness and minimising negative effects. Due to its smooth texture and organic nature, it is completely biodegradable. Nanosponges, as the name suggests, are nanoparticles that may contain medicine. This medicine is progressively released over time because the sponge has started to degrade. Because these Nanosponges can cross the tough BBB, according to some recent studies, we can employ them to carry cancer medications and attach linkers that will exclusively connect to cancer cells [25]. The community of polyester in nanosponges, a third-dimensional scaffold, allows for spontaneous degradation. These are formed of polyesters, some of which may be normally biodegradable, mixed with a cross-linker solution. The polyester disintegrates inside the body. Once the scaffold has been compromised, those small sponges can move through the body until they reach the precise target area and begin to distribute the medication in a predictable and regulated manner. A nanosponge reduces the negative effects on other tissues by delivering the anti-cancer agent to the cancerous tissues right away. This also increases the effectiveness of the medicine by giving the tumour cells a better understanding of the drug right away. This method of medicine delivery could result in fewer side effects. NSs with a cyclodextrin basis are typically used in the treatment of cancer [26, 27]. The nanosponge based drug delivery as shown in figure 3.

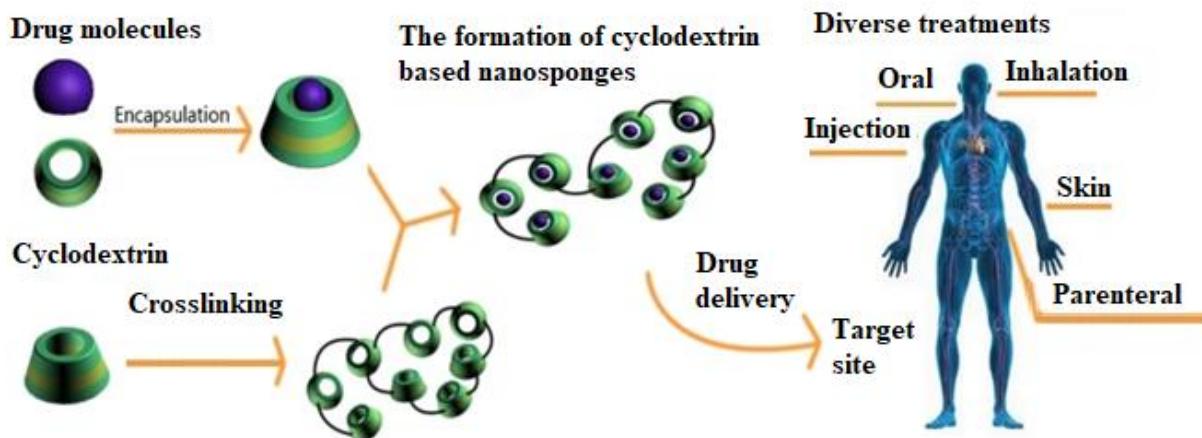



Figure 3: Nanosponge based drug delivery (Self created by using Microsoft Windows Paints Version21H1)

## 7.IMPACT OF NANOSPONGES ON CANCER

Complex molecules called nanosponges can be employed to deliver anti-cancer medications to specific bodily locations. Although the technology is still in development, it has been demonstrated to be up to five times more effective than conventional methods for dispensing breast cancer medications. Nanosponges have the power to change how tablets are ingested into the body, increasing their effectiveness and reducing negative effects. In the organism, the complex molecule disintegrates in a predictable way [28]. When the name suggests, nanosponges are tiny particles that contain medicine that are gradually released over time as the sponge starts to dissolve. These gadgets can be linked to a chemical transporter, which carries molecules across biological barriers and into specific intracellular niches that are difficult for most tablets to access. These nanosponges may be able to cross the challenging blood-brain barrier, according to several recent research [29]. Therefore, we may attach a linker that will only attach to cancer cells to nanosponges that are holding a cancer drug. A nanosponge reduces the negative effects on other tissues by delivering the anti-cancer agent immediately to the malignant tissues. It will also boost its effectiveness by delivering a better concentration of the drug immediately to the tumour cells. These nanosponges are extremely innovative and adaptable, and they may be designed to deliver proteins, peptides, DNA, and other tiny chemical compounds such as potent medications. These nanosponges can be made magnetic by arranging them around substances that have magnetic qualities. They can

also be attached to a fluorescent tag to indicate where they are supposed to go. Nanosplices can be transported through the lungs and veins thanks to their small size. Instead of the medicine widely circulating throughout the body, nanosplices deliver it directly to the tumour site [30]. Because less of the drug comes into contact with healthy tissue, it is therefore more effective for a given dosage and will also have fewer harmful side effects. They do so in a predictable way when releasing the medication. In contrast to many other nanoparticle delivery designs, once they reach their target, they rapidly and uncontrollably unleash the full amount of their medicine. This is known as the burst impact, and it makes choosing the right dosage levels for strong drugs challenging. Because nanosplices dissolve in water, it is possible to use hydrophobic anticancer tablets that are difficult to dissolve in water. Currently, such tablets must be mixed with every other substance, known as an adjuvant reagent, which decreases the drug's effectiveness and may have negative side effects. Because the nanosplices have a variety of side groups that are accessible, it is simple to bind medications to the particles [31].

## 8.NANOSPONGES AS ANTI-CANCER AGENTS:

### i. CD- Based NSs Drug Delivery

#### **Temozolomide**

It has been used as the first line treatment alongside surgical excision of gliomas. Because of their brief half-life of 1.8 hours and 15% of protein binding, it necessitates occasional dosage. Temozolomide has so achieved success in the field of nanotechnology. Magnetic resonance spectroscopy can be used to estimate the structure of NSs. The pharmacological interaction was calculated based on a tiny shift in the molecule's wavelength, which indicated interaction with hydrophobic groups. Temozolomide formulation based on NS demonstrated prolonged in-vitro release. After treatment, the morphology of the malignant human glioblastoma tumour worsened. This formula was improved upon to potentially generate distribution to the target area of the brain [32, 33].

#### **Tamoxifen**

Tamoxifen is a drug used to treat breast cancer in pre- and post-menopausal women that falls under the class of drugs known as selective oestrogen receptor modulators, which have both an estrogenic and an antiestrogenic effect. However, it has several side effects, some of which are also life-threatening, including endometrial carcinoma, metastatic tumour, venous thrombosis, and pulmonary emboli. It is therefore necessary to produce a tamoxifen formulation with a sustained release in order to lessen these side effects. In addition, it has a very poor water solubility, which restricts its therapeutic action and, once more, makes it a challenge to develop the formulation. To solve the problem of tamoxifen delivery to the site, extensive research has been conducted [34, 35] on tamoxifen delivery via new Nano suppliers.

#### **Paclitaxel**

Chemotherapy involves a difficult process. It can occasionally result in toxicity; the non-specificity of anti-neoplastic medications is the main cause of the majority of highly effective medications becoming harmful. Due to the anticancer compounds' weak water solubility, the likelihood of adverse effects is significantly higher as a result of their use. Small and non-small cell lung cancer, bladder cancer, neck, and head cancer are all treated with paclitaxel. It exhibits a wide range of adverse effects and has a low water solubility of 0.5 mg/l. Numerous studies have been conducted to modify paclitaxel using a variety of techniques, including micellization, emulsification, liposome formation, non-liposomal lipid transport, and many more. The treatment of recurrent metastatic breast cancer with chemotherapy includes the development of a novel formulation called albumin-bound paclitaxel. Paclitaxel was enclosed in the Nanosplice by mixing cyclodextrins with diphenyl carbonate as a cross-linker after extensive study and development of Nano sponges. 500mg of paclitaxel/g of nano sponge with a diameter of around 350 nm was developed as the drug payload. Rats were given oral dose of paclitaxel NS to test its pharmacokinetic characteristics. When compared to commercial taxol, it demonstrated a three-fold increase in bioavailability [36, 37].

#### **Resveratrol**

A natural stilbenoid phenol, resveratrol is. It can be derived through foods like blueberries, pistachios, grapes, and groundnuts. It is an antioxidant with anti-oncogenic qualities. It has a short half-life and is rapidly digested before being excreted. When administered orally, it has a negligible bioavailability and may be fatal. Its usage is therefore limited to ongoing clinical studies. Nanotechnology has been created in order to get around these restrictions [38].

#### **Curcumin**

One of the best anti-cancer substances is curcumin. It is a hydrophobic polyphenolic phytochemical that dissolves poorly in liquids at acidic pH levels but very well at basic pH levels. It is a key ingredient in turmeric.

In addition to having anticancer properties, it also has neuroprotective, cardioprotective, and antiatherosclerotic properties. It is used to treat a variety of tumour types, including prostate cancer, hepatic cellular carcinoma, leukaemia, and colon cancers [39].

Curcumin has a lot of drawbacks. It has considerable metabolism, low solubility, and low gastro intestinal absorption rate in addition to low bioavailability. At a physiological pH, degradation takes place. The -CD NSs curcumin formulation was created to address the aforementioned formulation difficulties and was successful in treating cancer. Compared to ordinary curcumin, the solubility of curcumin was increased significantly. This resulted from curcumin's complexation with NSs [40].

### ETB Glutathione

ETB is a chemical compound called [6, 7-bis (2-methoxy-ethoxy)-quinazolin-4-yl]-(-3-ethynylphenyl) amine hydrochloride, which binds to the human epidermal growth factor receptor through suppressing tyrosine kinase. By encouraging cell cycle arrest and death, it prevents angiogenesis. By binding to the EGFR's intracellular tyrosine kinase, the cell is invaded, which inhibits the receptor's autophosphorylation and prevents downstream signal transmission. In addition to treating ovarian cancer, head and neck cancer, and gliomas, ETB glutathione is also employed in this treatment. A few obstacles prevent the appropriate formation of TB glutathione. due to its weak solubility, it has a poor bioavailability. Is one of the causes of the drug's subpar formulation. Additionally, it is unstable in an intestinal environment. In addition to diarrhoea and other haematological side effects, it causes toxic consequences such a severe skin rash. The therapeutic effectiveness of the drug molecules is therefore increased by encasing them inside the interior cavity of nano-carriers in order to avoid unwanted negative effects. The solubility, targeting effectiveness, and biocompatibility rate are all improved by this method. Additionally, the medicine has successfully launched throughout time. In an one step procedure carried out at room temperature, ETB glutathione was integrated into NSs. Using high pressure liquid chromatography (HPLC), in-vitro release was assessed [41, 42].

### Delivery of Oxygen by NS Formulation Used in Cancer Therapy

Hypoxia is brought on by a lack of oxygen. Patients with cervical malignant tumours that are hypoxic have a low chance of survival. CD-based NSs, which can store gases like oxygen and were produced using alpha, beta, or gamma carbonyl di-imidazole, have the potential to be useful in the fields of cosmetics, drugs, and biotechnology. In order to supply oxygen, three distinct CDI-based nanosplices—alpha, beta, and gamma—were coupled with the NS formulation. High shear rates were used to homogenise the suspension for two to three minutes. To further show the stability of NS, it was sealed, filled with oxygen, and stored at 25°C [43].

## ii. Water- Soluble and Sparingly Soluble Anti-Cancer Molecules

### Doxorubicin

Doxorubicin hydrochloride infusion was the first liposomal anticancer medication to receive administrative approval. Major organ tumours and cancer of the soft tissues can be treated with doxorubicin. It had some drawbacks, including as cardiotoxicity and doxorubicin's sharp action, thus nanotechnology was suggested to lessen these effects. After being incorporated into the nanosplices, it was discovered that doxorubicin was released in a consistent and moderate manner. Doxorubicin released at a pH-dependent average rate of 1% in an acidic pH over the course of two hours and 29% in a basic pH over the course of three hours. Therefore, it can be inferred that doxorubicin was protected by the NS in the stomach's acidic environment before being transported to the gut and duodenum's basic environment [44, 45].

### Flourouracil (5-FU)

The medicine of choice for the treatment of cervical cancer, stomach cancer, and colorectal cancer is 5-FU. Due to its limited solubility, it was poorly absorbed when given orally. When given to children, it has a short terminal half-life (8–20 minutes). When administered intravenously, the negative effects produced were extremely photosensitive. Thus, gamma CD-based NSs were employed to enhance the drug's characteristics. The 5-FU nanosplice was created using the direct compression approach. The excipients were well mixed before being compacted into tablets measuring approximately 8mm. The drug's in-vitro release was enhanced to 96.66%. Achieved were better solubility profiles [46, 47].

## CONCLUSION

According to the aforementioned review, nanosplices contain hydrophilic and lipophilic medications and release them at the target spot in a regulated manner. The ratio of cross linkers and polymers can be balanced, and the release charge can be adjusted. Nanosplices enable insoluble tablets while preventing controlled release and physicochemical deterioration of active ingredients.

The nanospunge is a godsend for the treatment of cancer and works well for the delivery of hydrophobic and lipophilic medicines. The use of nanosplices has boosted the efficacy of therapeutic formulation and drug stability maintenance. As a conclusion, nanosplices are one of the preferred drug delivery systems and a growing trend in pharmaceutical sciences for the administration of oral, topical, and parenteral drugs.

## ABBREVIATIONS

CD: Cyclodextrin, NSs: Nanosplices, EPR: Enhanced permeability and retention, EC: Ethyl cellulose, PMMA: Polymethyl methacrylate, EC - Ethyl cellulose, PMMA - Poly methacrylate, DCM: Dichloro methane, PVA - Polyvinyl Alcohol.

## CONFLICT OF INTEREST

No

## FUNDING SUPPORT

NA

**ACKNOWLEDGMENT:** Authors express their sincere gratitude to SSS's Divine College of Pharmacy, Satana, Nashik for continuous motivation, support, and guidance for such activity and for providing all required facilities to accomplish the entitled work.

## REFERENCES:

1. Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosplices: A novel class of drug delivery system-review. *Journal of Pharmacy & Pharmaceutical Sciences*. 2012 Jan 17;15(1):103-11.
2. Sehgal N, Gupta V, Kanna S. A Review On Nanosplices: A Boon To Targeted Drug Delivery For Anticancer Drug. *Asian J Pharm Clin Res*. 2019;12(7):1-7.
3. Patil TS, Nalawade NA, Kakade VK, Kale SN. Nanosplices: A novel targeted drug delivery for cancer treatment. *International Journal for Advance Research and Development*. 2017;2(4).
4. Ravi SC, Krishnakumar K, Nair SK. Nano sponges: A targeted drug delivery system and its applications. *GSC Biological and Pharmaceutical Sciences*. 2019 Jun 30;7(3):040-7.
5. Subramanian S. Multifunctional Nanosplices for the Treatment of Cancer-A Review. *Journal of Pharmaceutical Sciences & Research*. 2017;9(12):2661-8.
6. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosplices to cancer drug delivery. *Expert Opinion on Drug Delivery*. 2014 Jun 1;11(6):931-41.
7. Kumar S, Dalal P, Rao R. Cyclodextrin nanosplices: a promising approach for modulating drug delivery. *Colloid Science in Pharmaceutical Nanotechnology*. 2020 Feb 12:79.
8. Mognetti B, Barberis A, Marino S, Berta G, De Francia S, Trotta F, Cavalli R. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosplice formulation. *Journal of Inclusion Phenomena and Macrocyclic Chemistry*. 2012 Dec;74(1):201-10.
9. Kumar RS, Bhowmik A. Nanosplices: Novel Drug Delivery for Treatment of cancer. *Journal of Drug Delivery and Therapeutics*. 2019 Aug 30;9(4-A):820-5.
10. Tiwari K, Bhattacharya S. The ascension of nanosplices as a drug delivery carrier: preparation, characterization, and applications. *Journal of Materials Science: Materials in Medicine*. 2022 Mar;33(3):1-21.
11. Argenziano M, Gigliotti CL, Clemente N, Boggio E, Ferrara B, Trotta F, Pizzimenti S, Barrera G, Boldorini R, Bessone F, Dianzani U. Improvement in the anti-tumor efficacy of doxorubicin nanosplices in in vitro and in mice bearing breast tumor models. *Cancers*. 2020 Jan 9;12(1):162.
12. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, Ferretti C, Zara GP, Gigliotti CL, Ciamporero ES, Pettazzoni P. GSH-targeted nanosplices increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses. *Free Radical Biology and Medicine*. 2016 Aug 1;97:24-37.
13. Penjuri SC, Ravouru N, Damineni S, Bns S, Poreddy SR. Formulation and evaluation of lansoprazole loaded Nanosplices. *Turk. J. Pharm. Sci.* 2016 Sep 1;13(3):304-10.

14. Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. *Pharmaceutical development and technology*. 2011 Aug 1;16(4):367-76.
15. Surana KR, Mahajan SK, Patil SJ. COUMARIN: A VALID SCAFFOLD IN MEDICINAL CHEMISTRY. *Journal of Advanced Scientific Research*. 2021 Sep 30;12(03 Suppl 1):21-34.
16. Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system--review. *Journal of Pharmacy & Pharmaceutical Sciences: a Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne des Sciences Pharmaceutiques*. 2012 Jan 1;15(1):103-11.
17. Jin Y, Liang L, Sun X, Yu G, Chen S, Shi S, Liu H, Li Z, Ge K, Liu D, Yang X. Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. *NPG Asia Materials*. 2018 May;10(5):373-84.
18. Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. *Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology*. 2016 Jul;8(4):579-601.
19. Lee CY. Strategies of temozolomide in future glioblastoma treatment. *OncoTargets and therapy*. 2017;10:265.
20. Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri-Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. *Expert opinion on drug delivery*. 2019 May 4;16(5):467-79.
21. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. *Pharmaceutical development and technology*. 2013 Jun 1;18(3):619-25.
22. Surana KR, Parkhe AG. *Asian Journal of Pharmaceutical Research. Pharmaceutical Research*. 2022;12(1):96-4.
23. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. *Drug delivery*. 2010 Aug 1;17(6):419-25.
24. Clemente N, Argenziano M, Gigliotti CL, Ferrara B, Boggio E, Chiocchetti A, Caldera F, Trotta F, Benetti E, Annaratone L, Ribero S. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models. *Frontiers in pharmacology*. 2019 Jul 12;10:776.
25. Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. *Journal of Drug Delivery Science and Technology*. 2019 Aug 1;52:55-64.
26. Talele SG, Ahire ED, Surana KR, Sonawane VN, Sonawane N, Talele GS. *Asian Journal of Pharmaceutical Research. Pharmaceutical Research*. 2022;12(1):45-3.
27. Palminteri M, Dhakar NK, Ferraresi A, Caldera F, Vidoni C, Trotta F, Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. *Nanotheranostics*. 2021;5(2):197.
28. Surana K, Ahire ED, Pawar R, Khairnar R, Mahajan S, Kshirsagar S, Talele SG, Thombre N, Ahire B, Keservani RK. Oral Health and Prebiotics. *Prebiotics and Probiotics in Disease Regulation and Management*. 2022 Sep 1:291-309.
29. Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. *Journal of inclusion phenomena and macrocyclic chemistry*. 2013 Apr;75(3):315-22.
30. Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. *Artificial cells, nanomedicine, and biotechnology*. 2018 Jul 4;46(5):1064-75.
31. Taiwade C, Fulfager A, Bhargave H, Soni G, Yadav K. Erlotinib Hydrochloride Novel Drug Delivery Systems: A Mini Review Unravelling the Role of Micro-and Nanocarriers. *Drug Delivery Letters*. 2021 Dec 1;11(4):295-306.
32. Ahire ED, Sonawane VN, Surana KR. Role of drug repurposing in current treatment strategies against COVID-19; systemic review. *Pharm Reson*. 2020:24-9.
33. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. *International journal of pharmaceutics*. 2010 Dec 15;402(1-2):254-7.

34. Ahire ED, Sonawane VN, Surana KR, Jadhav KR, Sonawane DD, Shah AA. Convalescent plasma therapy: A promising approach in the treatment of Covid-19. *Int J Pharm Sci Res.* 2020;11:4078-86.
35. Surana KR, Pawar RB, Khairnar RA, Mahajan SK. Protein Prenylation and Their Applications.
36. Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo J, Bordiga S, Vavia P, Ansari K. Cyclodextrin nanosponges as effective gas carriers. *Journal of inclusion phenomena and macrocyclic chemistry.* 2011 Oct;71(1):189-94.
37. Daga M, de Graaf IA, Argenziano M, Barranco AS, Loeck M, Al-Adwi Y, Cucci MA, Caldera F, Trotta F, Barrera G, Casini A. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. *Toxicology in Vitro.* 2020 Jun 1;65:104800.
38. Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. *Expert opinion on drug delivery.* 2014 Jan 1;11(1):111-20.
39. Jilsha G, Viswanad V. Nanosponges: A novel approach of drug delivery system. *Int. J. Pharm. Sci. Rev. Res.* 2013;19(2):119-23.
40. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. *Acta pharmaceutica.* 2013 Sep 30;63(3):335-58.
41. Dombe S, Shirote P. Nanosponges encapsulated phytochemicals for targeting cancer: a review. *Current Drug Targets.* 2021 Mar 1;22(4):443-62.
42. Ahire ED, Sharma N, Gupta PC, Khairnar S, Surana K, Ahire B, Sonawane V, Laddha U, Sonkamble S, Sabale R, Kshirsagar S. Developing Formulations of Prebiotics and Probiotics. *Prebiotics and Probiotics in Disease Regulation and Management.* 2022 Sep 1:271-90.
43. Osmani RA, Kulkarni PK, Gowda V, Hani U, Gupta VK, Prerana M, Saha C. Cyclodextrin-based nanosponges in drug delivery and cancer therapeutics: New perspectives for old problems. In *Applications of nanocomposite materials in drug delivery* 2018 Jan 1 (pp. 97-147). Woodhead Publishing.
44. Surana KR, Ahire ED, Sonawane VN, Talele SG. Biomolecular and Molecular Docking: A Modern Tool in Drug Discovery and Virtual Screening of Natural Products. In *Applied Pharmaceutical Practice and Nutraceuticals* 2021 Apr 14 (pp. 209-223). Apple Academic Press.
45. Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. *Carbohydrate polymers.* 2017 Oct 1;173:37-49.
46. Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F. Evolution of cyclodextrin nanosponges. *International journal of pharmaceutics.* 2017 Oct 15;531(2):470-9.
47. Iravani S, Varma RS. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. *Nanomaterials.* 2022 Jul 16;12(14):2440.